Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding
نویسندگان
چکیده
منابع مشابه
Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.
Mechanistic understanding of mechanochemical reactions is sparse and has been acquired mostly by stepwise ex situ analysis. We describe herein an unprecedented laboratory technique to monitor the course of mechanochemical transformations at the molecular level in situ and in real time by using Raman spectroscopy. The technique, in which translucent milling vessels are used that enable the colle...
متن کاملMechanochemical reactions of coordination polymers by grinding with KBr.
Grinding of a one-dimensional (1-D) ladder coordination polymer (CP), [Zn(μ-CH(3)CO(2))(CF(3)CO(2))bpe] (1), and a hydrogen-bonded 1-D CP, [Cd(CH(3)CO(2))(2)bpe(H(2)O)] (2), with KBr resulted in the exchange of carboxylate by bromide ions and the formation of 1-D zigzag and 2-D CPs respectively.
متن کاملThe effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy
We provide the first in situ and real-time study of the effect of milling frequency on the course of a mechanochemical organic reaction conducted using a vibratory shaker (mixer) ball mill. The use of in situ Raman spectroscopy for real-time monitoring of the mechanochemical synthesis of a 2,3-diphenylquinoxaline derivative revealed a pronounced dependence of chemical reactivity on small variat...
متن کاملIn situ NMR spectroscopy in heterogeneous catalysis
New experimental techniques of in situ MAS NMR spectroscopy introduced in the past decade made this analytical method to a useful tool for the study of heterogeneously catalyzed reactions. Batch and flow techniques were applied to study reactions catalyzed by basic and acidic solids. The present review introduces into in situ MAS NMR investigations of transition states, e.g., via the H/D exchan...
متن کاملIn-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy
With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Communications
سال: 2015
ISSN: 1359-7345,1364-548X
DOI: 10.1039/c5cc01915j